89 research outputs found

    Monte Carlo simulation of EAS generated by 10(14) - 10(16) eV protons

    Get PDF
    Detailed Monte Carlo simulations of extensive air showers to be detected by the Homestake Surface Underground Telescope and other similar detectors located at sea level and mountain altitudes have been performed for 10 to the 14th power to 10 to the 16th power eV primary energies. The results of these Monte Carlo calculations will provide an opportunity to compare the experimental data with different models for the composition and spectra of primaries and for the development of air showers. The results obtained for extensive air showers generated by 10 to the 14th power to 10 to the 16th power eV primary protons are reported

    Driver Accelerator Design for the 10 kW Upgrade of the Jefferson Lab IR FEL

    Full text link
    An upgrade of the Jefferson Lab IR FEL is now under construction. It will provide 10 kW output light power in a wavelength range of 2-10 microns. The FEL will be driven by a modest-sized 80-210 MeV, 10 mA energy-recovering superconducting RF (SRF) linac. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. These are imposed by the need for both transverse and longitudinal phase space management, the potential impact of collective phenomena (space charge, wakefields, beam break-up (BBU), and coherent synchrotron radiation (CSR)), and interactions between the FEL and the accelerator RF system. This report addresses these issues and presents an accelerator design solution meeting the requirements imposed by physical phenomena and operational necessities.Comment: submission THC03 for LINAC200

    COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS *

    Get PDF
    Abstract The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANS-PORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will cause BBU simulation results to be better matched with analytic calculations and experimental results

    Crab Crossing Schemes and Studies for Electron Ion Collider

    Get PDF
    This report shows our progress in crab crossing consideration for future electron-ion collider envisioned at JLab. In this design phase, we are evaluating two crabbing schemes viz., the deflecting and dispersive. The mathematical formulations and lattice design for these schemes are discussed in this paper. Numerical simulations involving particle tracking through a realistic deflecting RF cavity and optics illustrate the desired crab tilt of 25 mrad for 1.35 MV. Evolution of beam propagation are shown which provides the physical insight of the crabbing phenomenon

    PI3K-C2 alpha Knockdown Results in Rerouting of Insulin Signaling and Pancreatic Beta Cell Proliferation

    Get PDF
    Insulin resistance is a syndrome that affects multiple insulin target tissues, each having different biological functions regulated by insulin. A remaining question is to mechanistically explain how an insulin target cell/tissue can be insulin resistant in one biological function and insulin sensitive in another at the same time. Here, we provide evidence that in pancreatic beta cells, knockdown of PI3K-C2 alpha expression results in rerouting of the insulin signal from insulin receptor (IR)-B/PI3K-C2 alpha/PKB-mediated metabolic signaling to IR-B/Shc/ERK-mediated mitogenic signaling, which allows the beta cell to switch from a highly glucose-responsive, differentiated state to a proliferative state. Our data suggest the existence of IR-cascade-selective insulin resistance, which allows rerouting of the insulin signal within the same target cell. Hence, factors involved in the rerouting of the insulin signal represent tentative therapeutic targets in the treatment of insulin resistance.11108Ysciescopu

    Beam-Breakup Instability Theory for Energy Recovery Linacs

    Full text link
    Here we will derive the general theory of the beam-breakup instability in recirculating linear accelerators, in which the bunches do not have to be at the same RF phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs) where bunches are recirculated at a decelerating phase of the RF wave and for other recirculator arrangements where different RF phases are of an advantage. Furthermore it can be used for the analysis of phase errors of recirculated bunches. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. The general formulas are then analyzed for several analytically solvable cases, which show: (a) Why different higher order modes (HOM) in one cavity do not couple so that the most dangerous modes can be considered individually. (b) How different HOM frequencies have to be in order to consider them separately. (c) That no optics can cause the HOMs of two cavities to cancel. (d) How an optics can avoid the addition of the instabilities of two cavities. (e) How a HOM in a multiple-turn recirculator interferes with itself. Furthermore, a simple method to compute the orbit deviations produced by cavity misalignments has also been introduced. It is shown that the BBU instability always occurs before the orbit excursion becomes very large.Comment: 12 pages, 6 figure

    Advances on ELIC Design Studies

    Get PDF
    An electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams highly polarized is essential for exploring the new QCD frontier of strong color fields in nuclear and precisely imaging the sea-quarks and gluons in the nucleon. A conceptual design of a ring-ring collider based on CEBAF (ELIC) with energies up to 9 GeV for electrons/positrons and up to 225 GeV for protons and 100 GeV/u for ions has been proposed to fulfill the science desire and to serve as the next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. Here, we summarize recent design progress for the ELIC complex with four interaction points (IP); including interaction region optics with chromatic aberration compensation scheme and complete lattices for the Figure-8 collider rings. Further optimization of crab crossing angles at the IPs, simulations of beam-beam interactions and electron polarization in the Figure-8 ring and its matching at the IPs are also discussed

    Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab

    Full text link
    This report presents a brief summary of the science opportunities and program of a polarized medium energy electron-ion collider at Jefferson Lab and a comprehensive description of the conceptual design of such a collider based on the CEBAF electron accelerator facility.Comment: 160 pages, ~93 figures This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177, DE-AC02-06CH11357, DE-AC05-060R23177, and DESC0005823. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purpose
    corecore